
THESIS

INTEGRATION OF HYPERMEDIA CAPABILITY INTO
NPSNET IV.8, A LARGE-SCALE REAL-TIME

DISTRIBUTED SIMULATION SYSTEM

by

Alan Bruce Shaffer

 September 1995

 Thesis Advisor: David R. Pratt
 Co-Advisor: John S. Falby

Approved for public release; distribution is unlimited.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/ MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

5. FUNDING NUMBERS

i

Shaffer, Alan Bruce

September 1995 Master’s Thesis

Unclassified Unclassified ULUnclassified

INTEGRATION OF HYPERMEDIA CAPABILITY INTO NPSNET
IV.8, A LARGE-SCALE REAL-TIME DISTRIBUTED SIMULA-
TION SYSTEM(U)

Naval Postgraduate School
Monterey, CA 93943-5000

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

Approved for public release; distribution is unlimited.

In today’s large-scale computer simulations, the need has arisen to provide the user with an informed
means of navigating a virtual world, such as with hypermedia. While previous work has been conducted
in the area of hypermedia in a small-scale, single-user virtual world simulation, there has been no design
and implementation of hypermedia capability into a large-scale, real-time networked simulation, such as
the NPSNET project.

The method chosen for this thesis was to expand upon the Hyper-NPSNET project, a small-scale
virtual world simulation system with hypermedia capability, to provide this capability to NPSNET. Access
to video, audio, graphical, and textual data is provided via “anchors” placed throughout the world.
Additionally, a GUI interface panel was developed which allows the user to navigate throughout the
virtual world, and access information stored in an associated database. The interface panel allows the user
to view specific information from anchors within the 3D world. Additional utility is provided for authoring
of new anchors in the world.

The result of this thesis is that NPSNET now possesses a full hypermedia capability, controllable via
a system interface panel. A better overall training environment is provided because users can now readily
access database information while traversing this large-scale, multi-user virtual simulation.

Hypermedia, NPSNET, Hyper-NPSNET, Virtual Worlds

ii

iii

Approved for public release; distribution is unlimited

INTEGRATION OF HYPERMEDIA CAPABILITY INTO
NPSNET IV.8, A LARGE-SCALE REAL-TIME

DISTRIBUTED SIMULATION SYSTEM

Alan Bruce Shaffer
Lieutenant, United States Navy

B.S., U.S. Naval Academy, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1995

Author:

Alan Bruce Shaffer

Approved By:

David R. Pratt, Thesis Advisor

John S. Falby, Co-Advisor

Ted Lewis, Chairman,
Department of Computer Science

iv

v

ABSTRACT

In today’s large-scale computer simulations, the need has arisen to provide the user

with an informed means of navigating a virtual world, such as with hypermedia. While

previous work has been conducted in the area of hypermedia in a small-scale, single-user

virtual world simulation, there has been no design and implementation of hypermedia

capability into a large-scale, real-time networked simulation, such as the NPSNET project.

The method chosen for this thesis was to expand upon the Hyper-NPSNET project, a

small-scale virtual world simulation system with hypermedia capability, to provide this

capability to NPSNET. Access to video, audio, graphical, and textual data is provided via

“anchors” placed throughout the world. Additionally, a GUI interface panel was developed

which allows the user to navigate throughout the virtual world, and access information

stored in an associated database. The interface panel allows the user to view specific

information from anchors within the 3D world. Additional utility is provided for authoring

of new anchors in the world.

The result of this thesis is that NPSNET now possesses a full hypermedia capability,

controllable via a system interface panel. A better overall training environment is provided

because users can now readily access database information while traversing this large-

scale, multi-user virtual simulation.

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION .. 1
A. WHY HYPERMEDIA? ... 1
B. VIRTUAL WORLD ENVIRONMENTS .. 2
C. HYPERMEDIA IN NPSNET .. 3
D. CHAPTER SUMMARY .. 4

II. BACKGROUND AND PREVIOUS WORK ... 5
A. HYPERMEDIA BACKGROUND .. 5

1. Nodes, Links and Anchors ... 6
2. Basic Features of a Hypermedia System ... 7
3. Advantages of Hypermedia Format ... 8

B. PREVIOUS WORK ... 8
1. NPSNET .. 8
2. Hyper-NPSNET ... 9
3. ATOC3IPT ... 9
4. NPSNET Control/Interface Panel .. 10

III. HYPERMEDIA SYSTEM REQUIREMENTS .. 13
A. SOFTWARE REQUIREMENTS .. 13

1. NPSNET-IV.8 .. 13
2. ViewKit Software Development Toolkit 13

B. HARDWARE REQUIREMENTS ... 15
1. System Requirements ... 15
2. Disk Storage Capacity .. 16
3. Input Devices ... 16

IV. HYPERMEDIA FRAMEWORK IN NPSNET .. 17
A. HYPERMEDIA DATA STRUCTURES ... 17

1. HyperNode ... 17
2. Anchor .. 17
3. HyperSystem .. 18

B. COMMUNICATIONS PROTOCOL .. 20
1. Panel Class Intercommunication .. 20
2. Panel-NPSNET Communication ... 22

a. Hypermedia Socket Structure .. 22
b. NPSNET Host Filter .. 25

C. NPSNET ANCHOR CLASS ... 26
D. SUMMARY ... 28

V. HYPERMEDIA INTERFACE PANEL ... 31
A. HYPERMEDIA FILE ACCESS .. 31

1. Opening a File .. 31
2. Saving a File .. 34
3. Closing a File ... 36

B. HYPERMEDIA PREFERENCES ... 36

viii

1. Auto Anchor View ..36
2. Anchors On/Off Toggle ..38

C. VIRTUAL WORLD TRAVERSAL VIA ANCHOR NAVIGATION39
1. Anchors Available Window ...39
2. Jump Button ..39
3. History Button ..40
4. Back Button ..41

D. ANCHOR AUTHORING AND EDITING ..41
1. Building a New Anchor ..42
2. Editing an Existing Anchor ..43
3. Deleting an Anchor ...43

E. INFORMATION NODE ACCESS ..45
VI. CONCLUSIONS AND FUTURE WORK .. 47

A. RESULTS OF WORK ..47
1. User Interface ..48
2. Anchor Authoring Capability ...48

B. FUTURE WORK AREAS ...48
1. Interface Expansion ..49
2. Variable Anchor Types ...49
3. Hypermedia Datafile Access ..50

APPENDIX: NPSNET HYPERMEDIA USER’S MANUAL ...51
A. STARTING NPSNET AND THE INTERFACE PANEL51
B. SELECTING A VEHICLE TYPE ..51
C. OPENING A HYPERMEDIA DATABASE FILE52
D. SETTING HYPERMEDIA PREFERENCES ..52
E. EDITING HYPERMEDIA ANCHORS ...53
F. ANCHOR TRAVERSAL AND NODE SELECTION53
G. SAVING A FILE AND EXITING THE PROGRAM54

LIST OF REFERENCES ..57
INITIAL DISTRIBUTION LIST ...59

ix

LIST OF FIGURES

1. Simplified Hypertext Structure. From Ref. [NIEL90]...7
2. Use of VkApp Class in the Interface Panel main() Function.................................14
3. Communications within the Interface Panel ..21
4. Socket Communications Structure. From Ref. [MCMA94]..................................23
5. Hypermedia Communications Structure..24
6. NPSNET Anchors Class Definition...27
7. NPSNET Anchor Model Depiction ...29
8. NPSNET Interface Panel and Hypermedia Menus..32
9. Interface Panel Open File Dialog Box...33
10. Interface Panel Save File As Dialog Box ..35
11. Interface Panel Close Dialog Box..36
12. Interface Panel Preferences Dialog Box ..37
13. Interface Panel Anchors Available Window..40
14. Current Anchor Editor Dialog Window...44
15. Interface Panel Hypermedia Control Buttons..45

x

1

I. INTRODUCTION

In today’s world of computer simulation, the need to provide the user with an

efficient, informed means of navigating cyberspace is of utmost importance. This fact is

especially true when applied to virtual world applications in a training role, where

computer resources and time are often at a premium. One extremely effective means to this

end is through the application and use of Hypermedia capabilities in a virtual world

environment. The focus of this thesis is to implement such a capability into a large-scale

networked, distributed simulation system, specifically, the NPSNET research project being

conducted at the Naval Postgraduate School (NPS) in Monterey, California [ZYDA94].

This research expands on previous work conducted in this area, including the recently

developed Hyper-NPSNET, an offshoot of the NPSNET project, where multimedia is

imbedded into a small-scale 3D virtual environment [LOMB93].

A. WHY HYPERMEDIA?

The use of hypermedia in computer systems allows large amounts of data of various

formats to be managed in a relatively easy manner. The concept of hypermedia is simply

an extension of hypertext, which has been in use for some time on many popular systems.

An example of this is the Microsoft Windows help facility. This hypertext-based tool

allows a user to sort through a vast quantity of textual assistance information by selecting

a highlighted topic of interest in one area, or page, of the help system. This action

immediately sends the user to information pertaining to the desired topic, negating the need

to cycle through all intermediate, extraneous information. Without this hypertext

capability, a user might well find that using such a help facility is just not worth the time

needed to find the data he is looking for, not to mention the fact that it may be nearly

impossible to do so in some cases, due to sheer quantity of data.

2

The concept of hypertext can be extended to include not only management of

textual information, but management of other data as well, such as graphical images, sound,

and video. This extension forms the foundation for a hypermedia-based system. Data such

as graphical stills, audio, and video requires much more storage capacity than textual data,

and the need to efficiently access and manipulate this vast information becomes all the

more crucial in a real-time computer system such as NPSNET.

B. VIRTUAL WORLD ENVIRONMENTS

With the advent of high-scale real-time virtual reality (VR) systems, computers

have become an excellent, often necessary, training tool. Application areas range from the

military to the corporate world to formal educational institutes. Systems have been built

which allow, for instance, a military trainee to be placed in an otherwise hazardous

environment, such as on a battle field or within a burning space onboard a ship. With VR

computer systems, the trainee is able to conduct the sort of real training that in the past

might have required many, many more hours and dollars using more traditional training

techniques, often placing the trainee in danger. In fact, these restrictions often made certain

hazardous training prohibitive. With VR training systems, however, there are no such

restrictions based on the hazards of a situation, and in fact, this type of training is tailor

made for the virtual world. Of course, the need for more traditional training cannot be

superseded completely, but VR systems can provide much of the early work, where people

are more apt to make costly mistakes.

In distributed real-time VR systems, not only is individualized training possible, but

scenarios can be developed which involve multiple users spread across a network, each

participating from his own site, but all part of a common VR world. The advantages here

include all of those common to computer virtual world systems, with the additional benefit

that a given participant can receive direct human responses to his actions, as opposed to

interacting with preprogrammed computer generated entities. While these latter entities are

3

valuable in broadening the scope of some scenarios, the benefits of having other actual

humans acting in the virtual world is obvious.

To return to the earlier examples, hypermedia could enable a user, while involved

in training scenario, to access important data concerning a particular piece of enemy

artillery, or the routing of a fire main within the structure of the ship. In each of these cases,

the ability to display graphical images and video would be a valuable augmentation to

simple displaying of textual information. Would a soldier not gain much more by actually

seeing an enemy tank performing some typical maneuver, as opposed to just reading a

laundry list of its vital statistics and capabilities?

Beyond data access, hypermedia allows a trainee in such a scenario to “jump”

around within the virtual world. In the ship example, after fighting a simulated fire, the

trainee could immediately transport himself to, say, the engineering spaces to conduct

reduction gear training. In this case, preset hypermedia links will have been established

connecting different areas of the virtual world, which would allow the user to navigate in

such a manner.

C. HYPERMEDIA IN NPSNET

NPSNET is a networked, distributed simulation system allowing multiple users to

share the same virtual environment and interact with one another [ZYDA94]. It currently

possesses no real hypermedia capability, although a descendant has been built, known as

Hyper-NPSNET, whose objective is to provide a single-user limited hypermedia capability

from within an NPSNET-like environment. Hyper-NPSNET will be discussed in greater

detail in Chapter II. As mentioned previously, the objective here is to develop a hypermedia

framework to be incorporated into the current version, NPSNET-IV.8.

To completely implement a full hypermedia system requires: establishing a

multitude of links throughout a virtual world; definition of anchors which provide links to

textual, graphical, video, and sound data; creation of a database from which the user can

access information concerning any entity or object in the virtual world; and, providing an

4

“authoring” capability, which allows the user to create his own anchors within the world

and add data into the database. To undertake this completely into a simulation system of

the magnitude of NPSNET is a tall order, and far beyond the scope of this work. But, one

can still establish an initial hypermedia capability by implementing some of the above, such

as creating some major links within the virtual world, providing an initial database of

information with associated anchors in the world from which to access data, and perhaps

most important, providing an authoring capability allowing later additions to the database

and anchor structure, thus allowing for the hypermedia system to grow as time passes. This

latter implementation has been the thrust of this thesis work. To facilitate use of this system,

a scripted scenario within NPSNET was developed, thus allowing full use of the

hypermedia capabilities, but geared toward the database information and associated

anchors built here.

D. CHAPTER SUMMARY

This thesis is organized in the following manner. Chapter II provides a brief

background into the concept of hypermedia, and discusses previous work in the area of

hypermedia systems. Chapter III outlines the basic hardware and software system

requirements needed to use the NPSNET hypermedia system. Chapter IV presents the

hypermedia framework developed here. This is followed in Chapter V by a look at the

Interface-Control Panel, and how hypermedia functionality was incorporated into this.

Also included here is a discussion of anchor authoring tools. Finally, Chapter VI includes

conclusions and recommendations for further work in this area, followed by an appendix

and reference list.

5

II. BACKGROUND AND PREVIOUS WORK

A. HYPERMEDIA BACKGROUND

Hypertext has been defined as “an approach to information management in which

data is stored in a network of nodes connected by links. Nodes can contain text, graphics,

audio, video as well as source code or other forms of data.” [SMIT88] The concept of

hypertext extended to include all forms of multimedia is called “hypermedia”. The promise

of hypermedia lies in its ability to produce large, complex, richly connected, and cross-

referenced bodies of information that can be quickly and easily accessed.

The original idea behind hypertext was first put forth by Vannevar Bush, considered

the grandfather of hypertext, in July 1945. He described a device called “memex” in which

an “individual stores his books, records and communications, and which is mechanized so

that it may be consulted with exceeding speed and flexibility. It is an enlarged intimate

supplement to his memory.” [BUSH45] Bush was concerned about the explosion of

scientific literature at that time, and saw it as an impossibility to follow, even for specialists.

The Memex system would store information on microfiche which would be kept on a user’s

desk. The user would access data through translucent screens, using a keyboard and a series

of buttons and levers. He described an “associative indexing, the basic idea of which is a

provision whereby any item may be caused at will to select immediately and automatically

another. This is the essential feature of memex. The process of tying two items together is

the important thing.” [BUSH45] While the system was never implemented, its concepts

laid the base for today’s hypermedia systems.

In 1965, Ted Nelson first coined the word “hypertext” (non-linear text) and defined

it as “a body of written or pictorial material interconnected in a complex way that could not

be conveniently represented on paper. It may contain summaries or maps of its contents and

their interrelations; it may contain annotations, additions and footnotes from scholars who

6

have examined it.” [NELS65] Ted Nelson’s dream since the early 1960s was to have all the

world’s literature available in one publicly accessible global online system. For thirty

years, Nelson has worked on this vision of a “docuverse” (document universe) where

“everything should be available to everybody.” [NELS87] This work has produced

Xanadu, a repository publishing system “intended to store a body of writings as an

interconnected whole, with linkages, and to provide instantaneous access to any writings

within that body.” [NELS80] Xanadu has many interesting hypermedia concepts. For

example, it overcomes the problem of generating unique names for new documents such

that they can be found from any location on the network, and allows the ability to attribute

royalties to the author of a work whenever it is retrieved across the network.

1. Nodes, Links and Anchors

A hypermedia system consists of nodes (concepts) and links (relationships). A node

usually represents a single concept or idea. It can contain text, graphics, animation, audio,

video, images or programs. It can be typed (such as detail, proposition, collection,

summary, observation, issue) thereby carrying semantic information [RAO90]. Nodes are

connected to other nodes by links. The node from which a link originates is called the

reference and the node at which a link ends is called the referent. These nodes are also

referred to as anchors. The contents of a node are displayed by activating links.

Links connect related concepts or nodes. They can be bidirectional thus facilitating

backward traversals. Links can also be typed (such as specification link, elaboration link,

membership link, opposition link and others) specifying the nature of a relationship

[RAO90]. Links can be either referential (for cross-referencing purposes) or hierarchical

(showing parent-child relationships). Figure 1 uses a graphical example to illustrate the

relationships between nodes and links in a simple hypertext system.

7

2. Basic Features of a Hypermedia System

A hypermedia system is generally comprised of several basic components. Though

they are not all required in every case, the presence of each allows the user full flexibility

within the system. These components are listed as follows:

1. A Graphical User Interface, with the help of browsers and overview diagrams,

helps the user navigate through large amounts of information by activating links and

reading the contents of nodes.

2. An authoring system with tools to create and manage multimedia nodes and links.

3. Traditional information retrieval (IR) mechanisms such as keyword searches,

author searches etc. There are also attempts to incorporate structure queries along with

content queries - retrieving a part of the hypertext network based on some user-specified

criteria.

Assuming that you start by reading the piece of text markedA.
Instead of a single next place to go, this hypertext structure has
three options for the reader: Go toB, D, or E. Assuming that you
decide to go toB, you can then decide to go toC or toE, and from
E you can go toD. Since it was also possible for you to go directly
from A to D, this example shows that there may be several
different paths that connect two elements in a hypertext structure.

A CB

FED

Figure 1:Simplified Hypertext Structure. From Ref. [NIEL90]

8

4. A hypermedia engine to manage information about nodes and links.

5. A storage system which can be a file system, a knowledge base, or a relational or

object-oriented database management system.

3. Advantages of Hypermedia Format

Representing information in a hypermedia format has a number of distinct

advantages. Hypermedia can support good browsing capability. It can provide the user

better visual predominance of data, and more rapid navigation through huge numbers of

entries. Also, hypermedia provides a dynamic nature to information, something that the

printed word cannot readily provide, even in a traditional computer file structure. Finally,

since electronic media can now store amounts of information which were once

unimaginable, hypermedia in many cases provides the only means of accessing data in any

manner, timely or otherwise. [COOK88][RAYM88]

B. PREVIOUS WORK

1. NPSNET

The Naval Postgraduate School Networked Vehicle Simulator IV (NPSNET-IV) is

a low-cost, student written, real-time networked vehicle simulator that runs on commercial,

off-the-shelf workstations (the Silicon Graphics IRIS family of computers) [ZYDA93].

The simulation reads and writes Distributed Interactive Simulation (DIS) 2.0.3 protocol

data units (PDUs), and utilizes both SIMNET and MultiGen formatted terrain and model

databases [PRAT94]. NPSNET is an ongoing project, used as a test bed for new areas of

work within the NPSNET Research Group. Current areas of research include human

insertion and articulation into the Virtual Environment, terrain database evaluation and

improvement, integration of autonomous forces, and hypermedia integration, among

others.

9

2. Hyper-NPSNET

Hyper-NPSNET is a real-time, single-user virtual environment providing the user

with interactive hypermedia capability. Its main focus is to provide the underlying data

structures to embed multimedia information in a real-time 3D virtual environment

[LOMB93]. Unlike other similar projects, such as the Information Visualizer, Hyper-

NPSNET allows the user to navigate throughout the virtual world unconstrained

[CARD91]. In addition, it possesses the unique ability to attach up to four types of media

information to a single location in the world: audio, video, graphical, and textual.

Hyper-NPSNET builds a chain of links for each anchor visited by the user, allowing

him to “back out” in reverse order. At each anchor, the user has the ability to obtain

information about that particular location in the virtual world, such as location name and

world coordinates, or he/she may choose to playback audio, video, graphical, or textual

information previously attached to that anchor [LOMB93]. Also, Hyper-NPSNET allows

the user to create and define new anchors in the world, known as Authoring. These newly

created anchors may be attached to either locations or actual entities, and can then have

attached to them specific multimedia information for later retrieval.

A hypersystem is defined as the fundamental data structures that hold individual

node information and all underlying links between anchors and information nodes. At the

lowest level is the HyperNode, which is the basic information entity in the system. Above

this, Anchors contain up to four HyperNodes, or links to graphical, video, audio, and

textual information. The collection of all the Anchors in the database make up the

HyperSystem. It is at this level that anchors are created, deleted, and modified. [SERB94]

3. ATOC3IPT

The Automated Tactical Operations Command, Control, Communications, and

Intelligence Planning Tool (ATOC3IPT) was designed to aid commanders and their staff in

the decision making process, as well as to provide tactical training. ATOC3IPT is based on

Hyper-NPSNET, but is designed to be used with multiple users, and with multiple overlays

10

providing anchor information in the virtual world. The hypersystem used in Hyper-

NPSNET was extended for ATOC3IPT to include multiple permission-protected overlays

with multiple instances of each type of multimedia information available at any specific

location [SERB94]. As well, ATOC3IPT provides a highly enhanced graphical user

interface (GUI) through which the user can access the overlay information.

4. NPSNET Control/Interface Panel

With each new addition to NPSNET, the multitude of key strokes and input devices

used to control the system has become somewhat overwhelming. Since the focus of

NPSNET research had always been more in line with implementation of new entities and

features to explore “proof of concept,” a well structured user interface had never been a

driving factor. With the increasing functionality being built into NPSNET, however, it has

become a requirement that some manner of interface panel be designed for a user to more

readily utilize this ever growing system.

With this in mind, a fully functional control and interface panel was recently

designed and constructed for NPSNET. Utilizing object-oriented techniques, an

application framework was designed to enable the rapid creation and incorporation of

interface modules. This framework provides the capability for reusable interface

components that can be plugged into modules, while also offering the flexibility to

customize these interface components, or build new ones as required. [MCMA94]

The original interface panel was developed using the Iris Viewkit system, a toolkit

which allows for encapsulation of Motif widgets into C++ classes. The panel provides the

user the capability to both control and get feedback from another networked workstation

running NPSNET. Communication between the panel and the host computer running

NPSNET is handled via a defined data structure used as a protocol to be passed over a

broadcast socket stream. One drawback lies in the fact that the original socket protocol

made no use of a host computer identity, so multiple sessions of NPSNET running on a

local network will be controlled by the same interface panel, and the panel thus receive

11

conflicting feedback from the multiple hosts. Similarly, multiple interface panels running

at the same time will update a single NPSNET session, and in the case where multiple

interface panels and multiple sessions of NPSNET are all running on the same network

port, the results are unpredictable.

12

13

III. HYPERMEDIA SYSTEM REQUIREMENTS

In order to have full use of the NPSNET Hypermedia System, there are a number

of requirements one must first have. This section will outline these requirements, as well

as some discussion on the software tools used to create the system.

A. SOFTWARE REQUIREMENTS

1. NPSNET-IV.8

First and foremost, the Hypermedia System and its associated interface are an

integral part of the NPSNET project. The code for NPSNET version IV.8 includes the

hypermedia facilities. Specifically, the bulk of the Interface Panel code is located under the

NPSNET subdirectory:

src/interface/panel/

The main driver code and Makefile for the Interface Panel are located under the directory:

src/apps/panel/

Code contained within the main simulation loop of the NPSNET main() function

relating to the Interface Panel is bracketed by theREMOTE_PANEL definition. Specifics of

the modified code are described in a later section of this thesis.

2. ViewKit Software Development Toolkit

The ViewKit system, a part of the Silicon Graphics Irix 5.3 Operating system, is a

C++ toolkit that makes applications development much easier. It provides a collection of

high-level user interface components and other support facilities that must typically be

implemented in every application, such as windows, menus, and dialogs [VIEW94]. To be

able to run NPSNET with the full hypermedia system capability, one need only have the

ViewKit eoe files loaded onto the system. However, a brief discussion on the various

ViewKit tools used in developing this thesis are presented here for explanatory purposes.

14

ViewKit does not replace Motif for building menu and window widgets. In fact, it

uses Motif widgets to implement all of its user interface components; also, one can directly

call Motif functions to create and manipulate widgets in a ViewKit application. The

ViewKit architecture helps mask much of the complexity of programming with Motif.

While ViewKit possesses a very extensive library of predefined classes, it can be

used effectively with only a subset of these, which was the case for this thesis. The primary

components used wereVkApp, VkComponent, andVkSimpleWindow. VkApp is used to

define an overall application for the program, and its member functionrun() is called once

all other components have been established. TheVkApp class handles application-level

tasks such as Xt initialization, event handling, window management, cursor control, and

application busy states. Figure 2 shows a code extract from the Interface Panelmain()

function which defines theVkApp and the primaryVkComponent Panel.

In the above code extract,app is declared as theVkApp application variable. A

Panel object pointer is declared, and then shown. Theshow() member function is, of course,

not called until the entire Panel object has been built, which is the bulk of the program.

Then finally, the application is run.

All ViewKit components are derived from the abstract base classVkComponent,

which defines a basic structure and protocol for all components. TheVkComponent class

...

...

// instantiate the viewkit classes
VkApp *app = new VkApp(“Panel”, &argc, argv);
Panel *panel = new Panel(“panel”);

// show the panel widget
panel->show();

// run the application
app->run();

Figure 2: Use of VkApp Class in the Interface Panelmain() Function

15

sets up the basic component and callback structure of all its inherited classes.VkComponent

can be used as an object class itself, but is most often used as the base class of other

inherited ViewKit classes, e.g., theVkPreferencesDialog, theVkSimpleWindow, and the

VkMenu classes, all used extensively in this thesis work.

The VkPreferencesDialog class provides the basic structure for a dialog window

which can have selection toggles, text entry windows, and radio buttons built into it. Each

of these is itself a lower levelVkComponent, and theVkPreferencesDialog provides a easy

way of placing these widgets in one window. Additionally, this dialog window

automatically provides the push-button necessary for preference selection. This class was

used for the hypermedia preferences window and anchor editor.

The VkSimpleWindow, and its direct child classVkWindow, are a basic type of

widget which provide a simple frame into which almost anything can be placed. The only

key difference between these two is the fact that theVkWindow provides facility for a menu

bar, whileVkSimpleWindow does not. TheVkSimpleWindow was used in this thesis for

display of the hypermedia database files, as well as for the anchor lister window.

Finally, theVkMenu class provides for creation of all Motif style menu functions,

such as top level menu bars, pull-down menus, pop-up menus, and the like. The class

allows for the definition of menu items both statically and dynamically, as well as

providing the capability to sensitize and desensitize menu option selectors.

B. HARDWARE REQUIREMENTS

1. System Requirements

The Hypermedia System, as with NPSNET, is designed to run on the Silicon

Graphics Inc. family of graphics workstations. Because NPSNET is a very graphically

intensive program, it can require significant computing power. Compounding this is the

fact that playback of many hypermedia data files, particularly video files, can be very costly

too. Because of this, better overall performance is realized on the more advanced SGI

systems. An example of such a system would be the Onyx Reality Engine 2, with four 100

16

MHz processors, 128 Mbytes of main memory, and an integral Ethernet controller.

Realizing that all users may not have the assets to posses such state of the art computing

power, this system will operate just fine, with some speed degradation, on a lower level SGI

workstation.

In order to realize its full capabilities, the hypermedia system requires that a sound

system be present on the local workstation. Additionally, to make use of the Interface

Panel, complete with all of the hypermedia functionality, a dual-station setup is required.

This configuration would have NPSNET running on one workstation, while the Interface

Panel runs on a second, local workstation.

2. Disk Storage Capacity

By their very nature, hypermedia files tend to be quite large in size. As such, in

order to realize maximum performance from the hypermedia system, data files should be

maintained locally, so as to negate network transmission times. Some of the data files used

in development of this system range anywhere from 500Kbyte graphical image files to

upwards of 20Mbyte video files. It is relatively easy to see that a hypermedia system of

even moderate size will require a rather large hard disk storage capacity, on the order of

Gigabytes.

3. Input Devices

At a minimum, the only input device required to use NPSNET with the hypermedia

system is a mouse-type point-and-click device. This will provide the user the ability to

control the vehicle in NPSNET using the Interface Panel controls and access all

hypermedia functionality. A better system capability, however, would allow the user to

switch between a mouse for hypermedia functions, and more realistic controls for the

vehicle, such as a joystick and throttle setup. Future developments in the hypermedia area

might also include a voice input device, e.g., a microphone, to allow access to database

files, thus negating the need to have the user’s hands tied up accessing menu controls.

17

IV. HYPERMEDIA FRAMEWORK IN NPSNET

A. HYPERMEDIA DATA STRUCTURES

The hypermedia framework used for NPSNET IV.8 derives from that of the Hyper-

NPSNET system. Hyper-NPSNET is implemented as a series of C++ classes used to

represent the various levels of the hypermedia system, or HyperSystem. This HyperSystem

is designed as the fundamental data structure used to hold individual node information and

the underlying links between anchors and nodes. Each of the components of the

HyperSystem is described in detail below.

1. HyperNode

The HyperNode is the basic informational entity of the HyperSystem. It is

implemented as a record structure holding its identification, type, and associated data file

name. A node type can be one of four types: AUDIO, VIDEO, GRAPHIC, or TEXT,

representing the four types of hypermedia information which can be stored at a particular

location in the virtual world. For each node, the file name contains the path to the associated

data file related to the node’s type.

2. Anchor

The Anchor represents a particular location in the virtual world to which database

information can be linked, or from where one can travel directly to another location in the

HyperSystem. An anchor is essentially a container object that brings together HyperNode

information into a manageable structure. The information associated with a particular

anchor can be any or all of the aforementioned node types.

The Anchor is implemented as a C++ class made up of anchor identification, type,

name, location, orientation, and attached node types, as well as functions to set and retrieve

these values. Each anchor is identified internally by its unique identifier. The anchor name

18

is used only as a convenience to the user. The list of available anchor names can be

displayed by the user by simple selection of a button in the hypermedia control section of

the interface panel, to be described later. From this panel, the user can readily perform a

jump to a particular anchor, which represents a location and orientation in the virtual world.

The Anchor object stores this location, and the orientation is used to direct the user to a

specific view point once he/she has reached the anchor position.

Currently, only TERRAIN anchor types are implemented. These anchors represent

fixed locations in the virtual environment. Other anchor types, however, could conceivably

be implemented. Examples include vehicle or entity-specific anchors which are attached to

entities in the virtual world, or perhaps temporal anchors which are time constrained. These

new anchor types would be dynamic, either changing location over time, or having only a

limited lifetime.

3. HyperSystem

The HyperSystem provides the backbone of the overall hypermedia internal

structure. It organizes the Anchors and HyperNodes in such a way that they can easily be

accessed, created, modified, and deleted.

The anchors are organized into an array table structure, called theAnchorTable.

This table is built as an array of C++ structures, where each structure contains an anchor

index and a pointer to the associated anchor object. The array is initially instantiated to be

of a maximum size, in this case 30 elements, and theHyperSystem always maintains a

counter of the total anchors. In this way, a dynamic number of anchors can exist in a given

world database, as long as the maximum is not exceeded. If it were desired, the allowable

maximum could be increased as appropriate for the application (this is not currently a user

selectable option), or a dynamic array type of structure could be alternately used. At any

rate, by using an array data structure to organize the anchors in the hypermedia world,

direct and immediate indexing of anchors is allowed, thus speeding up user access to an

anchor, as for a jump or anchor modification.

19

The HyperNode objects are organized and stored in a similar manner to the Anchor

objects. For an anchor table holdingn anchors, there are necessarily4n nodes in the node

table. Each Anchor object contains an index to its four possible information nodes, such

that Anchor index 1 has attached to it HyperNode indexes 1 through 4, for example.

The Hyper-NPSNET system had previously allowed for anchor additions to the

world database, but had no provision for deletion of anchors. Obviously, as a world

database grows with time, certain anchors will become obsolete. The only means of

cleaning out the database previously was through direct editing of the data file. This was

deemed unacceptable, so an anchor deletion capability was added to the new system.

The anchor deletion capability posed an interesting set of problems, due to the

nature of the anchor and node data structures being so closely tied to one another. First,

when the user selects an anchor to be deleted, its index is accessed from the anchor table

and the associated anchor object deleted. Then, to maintain the anchor table ordering, the

indices of all anchors after the deleted one must be decremented. As well, the associated

anchor table element pointers must be reset for these anchors. For example, suppose anchor

i is deleted. Anchorsi+1 throughn in the anchor table must now all have their indices

decremented, and the anchor object pointer for the new anchori would now point to the

previous anchor i+1. This process must then be carried out for the remaining anchors

through anchorn.

The interesting part comes when one considers the consequences of an anchor

deletion on the node table. Since one anchor links to four nodes, the above process of

decrementing table indices and resetting pointers must be carried out in the node table by

groups of four. To illustrate, in the above example where anchori was deleted, the

associated nodes to delete would be indices4i, 4i+1, 4i+2, and4i+3. With this in mind,

node4(i+1) would now become the new node4i, node4(i+1)+1 would become4i+1, and

so on. At the same time, the pointers would need to be reset such that the new node with

index4i has a pointer to the previous node4(i+1).

20

In deleting anchors from the world database, it was important that two things occur.

First, the deleted anchor needed to be reflected on the interface panelAnchorLister in real

time. In other words, the user needed to see the anchor disappear from the Lister, as well

as in the virtual world. Also, the deletion needed to be maintained so that later, when the

world was saved back to the database, the new information was stored correctly. By using

the above described data structures, both of these goals were met.

B. COMMUNICATIONS PROTOCOL

The communications mechanisms developed for the original Interface Panel were

grouped into three categories: communications between Panel classes, communications

between NPSNET and the Panel, and Panel communications with other DIS network

traffic. For this thesis work, two of these categories were updated: Panel class

intercommunication, and the communication between the Panel and NPSNET. Figure 3

shows an overview of the updated communications structure with major components of the

hypermedia system enclosed by a dashed box.

1. Panel Class Intercommunication

Updating the Panel intercommunications structure involved combining the

individual Hyper-NPSNET and Control-Interface Panel communications structures.

Previously, the interface panel structure provided communications between the vehicle

classes and the window ViewKit widgets in order to display vehicle specific controls. In

designing the new hypermedia system, these communications needed to be maintained,

while also incorporating the necessary HyperSystem communications.

To provide the hypermedia functionality needed in the interface panel, a

HyperButtons class was added to the interface panel. This class provides ViewKit button

widgets for selecting various information node data, jumping back through the anchor

stack, and displaying the list of available anchors (details of these functions are discussed

in Sections V.C and V.E of this thesis). In each of these cases, selection of a button sends

a message to the Panel class, which then performs the appropriate action. For example,

21

Throttle

Joystick

Instrument

Viewscreen

RadarMap

Message

VkPeriodic

ModSAF
Libraries

Socket
Libraries

Network
Libraries

Communications Between Panel Classes

Host machine running NPSNET

Panel-NPSNET
Communication

NPSNET DIS Network Traffic

DIS
Network
Traffic
Comms

PrefsWindow

HyperSystem

AnchorLister

Figure 3: Communications within the Interface Panel

HyperButtons

Panel

VkWindow

Tank

Aircraft

ASWHelo

Stealth

EditAnchorWin

22

when a hypermedia world is actively open, and an anchor current, selection of theVideo

button in the HyperButtons class will cause the Panel to bring up themovieplayer utility

with the associated video data file.

Similarly, selection of the HyperButtonsAnchors Available button widget will

send a message to the Panel to display the AnchorLister object window. Subsequent

interaction with the Anchor Lister will then send appropriate messages back to the Panel

and to the HyperSystem. For example, selection of the Jump button on the Anchor Lister

will send a message to the Hypersystem to get the anchor’s position, which will in turn

write a PDU socket to NPSNET to update the virtual world.

2. Panel-NPSNET Communication

a. Hypermedia Socket Structure

Communication between the Interface Panel and NPSNET is handled

through a PDU communications socket. Previously, a socket structure was defined as seen

in Figure 4. This maintained all the necessary vehicle data for display on the panel, as well

as for entity updating within NPSNET. This socket structure holds the principle changes

made to the Panel and NPSNET intercommunications. Note that the socket in the figure

includes an element calledhypermediaData of typeHYPER_DATA . It is this element

that has been added to the structure, and which maintains the pertinent hypermedia

information to be passed between the panel and NPSNET.

Figure 5 shows the new structure added for the hypermedia data

communications. The structure, calledHYPER_DATA , was designed to allow for

complete control of the NPSNET anchor system, while still keeping the data packet size to

a minimum to maintain network speed. The first element,anchorArray , is used to store

the location and orientation data for each anchor in the HyperSystem. Whenever a

modification is made to any of the anchors in the HyperSystem, theanchorArray

information is updated, and a PDU socket written to NPSNET. This ensures that any anchor

changes are immediately registered visually in the virtual world.

23

typedef struct {

 // Identify the type of data structure being passed
 double status;
 unsigned short type;
 unsigned short length;

 // Throttle data required to read the throttle position
 // (-1.0 to 1.0) and to set the throttle input with the
 // scale widget
 float throttleSetting;

 // Joystick data required to read the joystick position
 // and set input as required (each is between -1.0 and 1.0)
 float joystickX;
 float joystickY;

 // Vehicle settings read from NPSNET only
 float positionX;
 float positionY;
 float positionZ;

 float altitude;
 float heading;
 float pitch;
 float roll;

 float velocity;
 float gunAzimuth;
 float gunElevation;

 EntityID vehicleID;

 // Settings sent to execute NPSNET actions
 EntityID targetVehicleID;
 HYPER_DATA hypermediaData;

 BYTE attachMode; // Including tether, attach, target,teleport

 BYTE weaponsMode; // Including primary, secondary,tertiary,
 // targetingEnable

 BYTE hudMode; // Including hudEnable

 BYTE environmentMode; // Including fogEnable, wireframeEnable,
 // textureEnable, cameraEnable

 // Variable settings to control NPSNET functions
 BYTE fogSetting;
 BYTE hudSetting;

} GUI_MSG_DATA;

Figure 4: Socket Communications Structure. From Ref. [MCMA94]

24

ThefileOpened element stores whether or not a hypermedia file is currently

open at the interface panel. This is used to indicate to the NPSNET main() function

simulation loop whether or not to process interface panel input data. ThedisplayAnchors

andanchorCount elements are used to tell the Anchor class whether or not it should add

the anchor model to each of the active anchor array elements for display. This procedure is

detailed in a later section.

The elementsjumpToAnchor and jumpToThisAnchor are used to

indicate to NPSNET that an anchor traversal has been performed at the interface panel. The

former of these acts as the jump flag, and is set by the panel as part of theJump button

typedef struct {

 // The array of anchors to be displayed in the virtual world.
 AnchorData anchorArray[MAX_ANCHORS];

 // Indicate whether a hypermedia file is currently open
 unsigned fileOpened;

 // Indicate whether or not anchors are to be displayed, and
 // the count of anchors to be displayed in the panel.
 unsigned char displayAnchors;
 int anchorCount;

 // Indicate whether an anchor jump has been made on the panel.
 unsigned char jumpToAnchor;
 int jumpToThisAnchor;

 // Indicate whether the anchor system has been changed, so
 // that NPSNET can redraw the anchors
 unsigned anchorsChanged;

} HYPER_DATA;

typedef struct {
 float positionX;
 float positionY;
 float positionZ;
 float orientation;
} AnchorData;

Figure 5: Hypermedia Communications Structure

25

callback. After a socket is written to NPSNET, this flag value is immediately set back to

false. The latter element stores which anchor is being jumped to. It always stores the value

of the last jump anchor, and is valid only ifjumpToAnchor is true.

Because of the relative static nature of an anchor once it has been placed in

the virtual world, there is no real need to redraw the anchor system in NPSNET with each

new frame, or even with each PDU socket written from the interface panel. In fact, the

anchor system needs to be redrawn only when an anchor has been modified in some way

or when initially drawing it for the first time. This essentially describes the purpose of the

last element in theHYPER_DATA structure, anchorsChanged. Whenever the

HyperSystem has been modified in the interface panel, the PDU socket is modified so that

anchorsChanged is set to true. When the next socket is written to NPSNET,

anchorsChanged indicates that the anchor array must be rebuilt and the anchors redrawn.

This procedure is handled by the Anchor class functiondraw_anchors(), discussed in the

next section.

b. NPSNET Host Filter

The previous version of the Control-Interface Panel had included no

capability to designate a specific NPSNET host workstation for which to provide interface.

The Message classread_socket() function simply read in any and every socket put onto the

net, and interpreted it accordingly. This situation worked fine for the case where only one

Interface Panel and one NPSNET session were running simultaneously. The Panel would

receive PDU sockets from only the single NPSNET session, and would interface correctly.

Even if one desired a situation whereby two or more interface panels controlled a single

session of NPSNET, such as in a tank crew training scenario, this case also performed

correctly. This was because, again, only the one NPSNET session was sending feedback to

the multiple panels.

The problem arose when one desired to run a multiple Interface Panel,

multiple NPSNET session scenario. In this case, PDU sockets from every panel where

26

being read and acted upon by every NPSNET host, thus causing chaos. This occurred

because the Message class made no use of a socket identification mechanism.

Looking at Figure 4, the socket structure has a data member called

vehicleID of typeEntityID . TheEntityID type maintains a unique host, site, and entity

identification number for each vehicle. This data, however, was not being used to

differentiate among the different NPSNET sessions hosts when a particular panel read a

PDU socket. The new interface panel, as well as adding the hypermedia capability, has also

added a mechanism by which the user can designate specifically which local NPSNET host

he/she wishes to control when running the panel. The Message class then checks the host

and site identity for an incoming PDU socket, and then discards those that do not apply to

the desired host.

With this added feature, users now have the capability to run all possible

Panel-NPSNET combinations. This allows for the possibility of crew coordination training

whereby multiple players controlling a single vehicle entity in the virtual world can fight a

simulated exercise against other entities also being controlled by multiple players.

C. NPSNET ANCHOR CLASS

In order to provide the user an indication of an anchor location in the virtual world,

it was necessary to build some type of visual marker into NPSNET. To do this, a new C++

class was defined in NPSNET to provide the required functionality. Also, an actual anchor

model needed to be built for the display itself.

Figure 6 is a code extract from the NPSNETanchor.h file, showing the definition

for the Anchors class. The class is made up principally of an array calledL_anchor, which

can hold a maximum number of anchors. Each anchor is represented by a locally defined

structure, ANCHORNODETYPE, made up of three elements: a Performer dynamic

coordinate system, or pfDCS, node; the anchor type; and, a flag showing whether or not the

anchor is active in the system. Currently, an anchor is designed to be of only one possible

27

type: TERRAIN. The other component of the Anchors class is a Performer pfGroup node

calledanchor.

The Anchors class provides a number of member functions, both public and

protected. To begin, the class constructor performs two principle functions. It first loads the

MultiGen flight file model for the anchor into the pfGroup nodeanchor. This provides the

model to be rendered in the virtual world scene. Then, it initializes theL_anchor array by

creating a new Performer dcs for each anchor, setting the anchortype to TERRAIN, and

setting theactive flag to false. This basically establishes the array of anchors, but without

actual anchor models attached to any of the elements.

The next function,display_anchors(), is called in the NPSNETmain() simulation

loop. The functiondisplay_anchors() cycles through the array of anchors in the

HyperSystem, sent over in the interface panel communications socket, and for each anchor

location, makes an anchor. This is done by making a call to the Anchors protected member

//local data structure used to hold the anchors
typedef struct {
 pfDCS *dcs;
 unsigned type;
 int active;
} ANCHORNODETYPE;

class Anchors {
public:
 Anchors();
 ~Anchors();

 void display_anchors();
 void dump_anchors();

protected:
 pfGroup *anchor;
 ANCHORNODETYPE L_anchor[MAX_ANCHORS];
 void makeanchor(int, pfVec3);

};

Figure 6: NPSNETAnchors Class Definition

28

function,makeanchors. Themakeanchors function adds ananchor model to the current

L_anchor array pfDCS node using apfAddChild call, and sets the anchor’sactive flag to

true. Once this process has completed for all of the anchors in the HyperSystem, the

L_anchor array will be loaded with ananchor model attached to each of the appropriate

dcs nodes. When the next scene is drawn in themain() loop of NPSNET, the Performer

subtree representing the anchor system will render all of the current anchors sent from the

interface panel. Figure 7 depicts the anchor model rendered in an NPSNET scene. The

anchor in this figure has been attached to a building in the virtual world, and is drawn in

such a place that it can be seen from a distance.

Finally, the Anchor classdump_anchors() function clears out all of the anchors in

the Performer subtree. To do this, the anchor model for each L_anchor array index is

removed from the appropriate pfDCS node using the pfRemoveChild call. Also, theactive

flag is set back to false for each element of the array. This function is called whenever

Anchors Off is selected on the interface panel, or when the HyperSystem is terminated, i.e.,

the current hypermedia file is closed.

D. SUMMARY

The framework structure for the new NPSNET Hypermedia System was designed

with the older Hyper-NPSNET structure in mind, but was expanded significantly beyond

it. The interface was redesigned using the SGI ViewKit Toolkit, and incorporated into the

NPSNET Interface Panel. Functionality was added to the hypermedia controls, such as the

ability to not only add and modify anchors in a hypermedia database, but also to delete

them, and the ability to inspect the stack of previous anchors visited and traverse directly

to an earlier anchor.

Additionally, logic was added to allow the user to designate specifically which

NPSNET host he/she was controlling from the interface panel. This functionality is

essential to providing crew coordination training, whereby multiple users can control the

29

same vehicle entity in a virtual exercise. Alternately, an exercise can have multiple

interface panels each controlling a different entity in the virtual environment.

Figure 7: NPSNET Anchor Model Depiction

30

31

V. HYPERMEDIA INTERFACE PANEL

The NPSNET Control-Interface Panel was modified in a number of ways to incorporate

hypermedia functionality for the new NPSNET Hypermedia System. Menus were built to

manipulate hypermedia database files, display anchors in the virtual world, traverse the

world using these anchors, and access the information nodes while in NPSNET. In each

case, the functionality mentioned above was developed using the SGI ViewKit Toolkit, and

is detailed in this chapter.

A. HYPERMEDIA FILE ACCESS

The hypermedia system designed for NPSNET provides a user-friendly interface

for interaction with hypermedia files stored on the user’s local file system. Utilities are

provided to open an existing hypermedia file, save the current anchor system to an existing

file, or to save it under a new file name. Additionally, protection is built in so that a user

cannot open a new file, close a file, or quit the system altogether without first being given

the opportunity to save the current anchor structure. Figure 8 shows a rendering of the

Interface Panel with major components, including the Hypermedia Controls, annotated.

File access is provided via theHypermedia pulldown menu at the top of the

interface control panel. Under this menu are several submenus, which can be seen in Figure

8. One of these submenus is titledFile, and it is here that hypermedia files can be opened,

saved, and closed.

1. Opening a File

There are two methods by which a user can designate a hypermedia file as the

current one being used for an NPSNET session. Either an existing file can be opened, or a

new file designated. The latter case is straightforward, and involves simply selectingNew

under theHypermedia-File submenu. This will activate the various anchor capabilities

32

Hypermedia
Control Buttons

ModSAF 2-D Window

JoystickThrottle Radar
Hypermedia

Pulldown Menu
Vehicle

Instruments

Hypermedia
File
Edit
Display

New
Open

Save
Save As

Close

Hypermedia
File
Edit
Display

Preferences

New Anchor
Current Anchor

Hypermedia
File
Edit
Display Anchors On

Figure 8: NPSNET Interface Panel and Hypermedia Menus

33

and functions. At this time, no anchors will be displayed in NPSNET, but the user can begin

the process of building anchors and designating information nodes for the anchors.

The user can also open an existing hypermedia file and thus designate it as the

current file in the NPSNET session. As with a new file, an existing database file can be

opened under theHypermedia-File submenu by using theOpen selection. This button will

display a file dialog box, as seen in Figure 9 below.

Figure 9: Interface PanelOpen File Dialog Box

34

The file dialog box was built using the ViewKitVkFileSelectionDialog class. This

class allows an initial directory path filter and file name to be specified, so that upon display

of the dialog box these defaults are automatically entered into the appropriate windows.

Within the dialog box, the user can then adjust the path filter to look for specific file types

in a particular directory, and the file list window will automatically update. Once the

desired file appears in the list window, the user simply selects this file and then selects the

Ok button, which sets about a chain of events to open this file and read it into the

HyperSystem data structure. The system’s anchors, if any, will be displayed within the

NPSNET virtual world. Alternately, the user can simply type the desired file path and name

into the Selection text input window, followed by theOkbutton.

2. Saving a File

As with opening a hypermedia database file, there are two methods to use in order

to save the current virtual world anchor system to a database file. The first applies in cases

when an existing file is currently opened, while the second applies when an anchor system

is to be saved under a new file name. The first case is the simple one where an existing

database file has been previously opened, and is accomplished by selecting theSave button

under theHypermedia-File submenu. This action will automatically update the currently

opened database file to reflect whatever changes have been made to the HyperSystem, e.g.,

any anchors added, deleted, or modified, or information nodes edited, will be saved to the

current file. TheSave option is only made available in cases when an existing file has been

opened, and will not be enabled when working with an original New file.

TheSave As option under theHypermedia-File submenu is used when the current

anchor system is to be saved to either a new database file, or a designated existing file.

Figure 10 below shows an example of theSave File As dialog box used to designate the file

name to save a hypermedia system under. This dialog was developed using the ViewKit

VkFileSelectionDialog class and, like the Open File dialog, has the ability to be displayed

with default values for directory path and file name. The path filter can be modified to

35

reflect where the database file is to reside, and then the new file name typed is into the

Selection text input window. The default file nameworld_new.hyp is used simply to

provide the user a possible naming convention, and must be overwritten by a new name

each time the function is used.

Figure 10: Interface PanelSave File As Dialog Box

36

3. Closing a File

To close a current hypermedia file, one need only select theClose option under the

Hypermedia-File submenu. If the anchor system has not been changed at all, or since the

last Save, the file will simply be closed and all pertinent anchor functionality will be

deactivated. If, however, the system has been modified at all, then a dialog box will appear

asking the user if he/she desires to save the current information to a database file. This

dialog can be seen below in Figure 11.

 Selection of theYes button will either save and close the file, or bring up theSave

File As dialog box, as appropriate. TheNo button will close the file without saving any

modified information, while theCancel button will terminate the close command and the

current file will remain opened and unchanged.

B. HYPERMEDIA PREFERENCES

Once a database file has been opened and installed into the HyperSystem, several

hypermedia system preferences become available for selection through the Control-

Interface Panel. These preferences are detailed in this section.

1. Auto Anchor View

The Hypermedia Preferences dialog box can be displayed by selecting the

Preferences option under theHypermedia-Edit submenu on the Interface Panel. This

Figure 11: Interface PanelClose Dialog Box

37

dialog box allows the user to select theAuto Anchor View function, as well as which types

of information will be displayed. Figure 12 shows an example of the Hypermedia

Preferences dialog box.

Once the desired toggles are depressed, selection of theOk button will apply the

information and hide the dialog box. TheApply button will apply the selections but leave

the dialog box up for further modification. Lastly, theCancel button will cancel the dialog

box and register no changes to the current HyperSystem.

Figure 12: Interface Panel Preferences Dialog Box

38

Essentially, theAuto Anchor View function causes an anchor’s information nodes

to be automatically displayed when the vehicle being controlled comes within a specified

range of that anchor. Which nodes are displayed is contingent upon selection of theAudio,

Video, Graphic, andText toggle buttons on the Hypermedia Preferences dialog, as well as

whether the anchor in question has a link to a specific type of information node. The range

out to which Auto Anchor View is enabled can be set in the Distance text input window

and is initially set to a default value of 20.0 units.

The entered range value, in conjunction with the fact that Auto Anchor View is

selected, will invoke a member function of the Message class to check the lateral distance

between the vehicle in the virtual world and each anchor in the HyperSystem, with each

socket written from NPSNET to the Panel. When the vehicle position, as read from the

communications socket, shows it to be within the specified range of one or more anchors,

the informations nodes of the closest anchor will display as windows on top of the Panel.

The user can then remove these windows when he/she is finished viewing the data.

2. Anchors On/Off Toggle

The user also has the option of whether or not to display the anchors of a

HyperSystem. When a file is initially opened, the default is for anchors to be displayed in

the virtual world, but this option can be deselected by clicking theAnchors On option on

theDisplay submenu under theHypermedia pulldown menu. This action will toggle the

button to readAnchors Off. Subsequent selection will toggle the option back toAnchors

On, and so on.

By selecting anchors off, a flag variable in the communications socket between the

panel and NPSNET is set to indicate that this option has been selected. This causes the

Performer code in NPSNET to delete the anchor models from the anchor subtree, thus not

displaying them in the virtual world. It is important to note that this is the only action

undertaken by selection of theAnchors Off option, and that all other hypermedia

39

capability still exists between the HyperSystem and the NPSNET session, including anchor

authoring and navigation, both discussed later.

C. VIRTUAL WORLD TRAVERSAL VIA ANCHOR NAVIGATION

In addition to the vehicle control capabilities provided by the Interface Panel via the

graphical throttle and joystick, the Hypermedia System also allows vehicle movement

throughout the virtual world using the anchor system. The various methods of performing

such traversals are described here.

1. Anchors Available Window

As soon as a hypermedia file has been opened, or a new system initiated, the

Anchors Available button along the lower edge of the Interface Panel will become

enabled. Selection of this button will bring up the Anchors Available window within the

Panel, as can be seen in Figure 13.

The Anchors Available window is built using the ViewKitVkSimpleWindow class,

which essentially allows one to bring up a window in which to display anything. This

window is broken down into two primary sections: the Anchor Lister and the Function

Buttons. The Anchor Lister is a MotifxmScrolledWindowWidgetClass widget into which

all the anchors of the HyperSystem are listed. This widget allows for selection of its listed

items, which are returned to the callback function of the appropriate Function Button.

2. Jump Button

The Function Buttons allow for navigation between the anchors in a number of

ways, and for deletion of anchors from the HyperSystem, and thus the list. TheJump

button is used to traverse directly to the location of the selected anchor from the list. The

Jump button will send the position of the anchor to NPSNET in the next outgoing

communications socket, along with an indication that a jump has been made. NPSNET will

then update the vehicle position and view orientation to that of the anchor. Also, due to the

fact that a moving vehicle can make an anchor jump, the vehicle’s speed and throttle

40

position in NPSNET will be updated to zero. This feature was added to prevent those

occasions where a moving vehicle jumps to an anchor that happens to be facing perhaps a

wall, or possibly a cliff, thus sending the vehicle to its death. A jump can also be performed

by double-clicking on an anchor name from within the list window. This will accomplish

the same thing as using theJump button.

3. History Button

TheHistory button allows the user to go back to a previous anchor position, and

becomes essential in large sized HyperSystems containing many anchors. Selection of the

History button will cause the lister window to show the contents of the HyperStack, which

reflects those anchors that have been visited. Additionally, theHistory button will now

readAll Anchors. The user can then take one of two possible actions. Either a past anchor

can be traveled to, using theJump button as described above, or theAll Anchors button

Figure 13: Interface Panel Anchors Available Window

41

can be selected to redisplay the complete anchor listing with no change in vehicle location.

Selection of theJump button will also redisplay the complete anchor listing, after

performing the jump, and return theHistory button to the display.

4. Back Button

Another anchor traversal feature provided to the user is the ability to “back up”

through the previous anchors visited. Unlike the previous functions described here, the

Back button is not located in the Anchors Available window, since it does not relate

directly to the selection of a specific anchor. Instead, it is placed along the bottom edge of

the Interface Panel, along with the other Hypermedia Control Buttons, where it can be

easily accessed without the need to bring up the Anchors Available window.

TheBack button, when selected, simply inspects the current HyperStack and pops

off the top anchor identifier, thus making the anchor below it the current anchor. The

location of this new current anchor will be sent to NPSNET in the next outgoing

communications socket, thus updating the vehicle position to that of the anchor. The

Interface Panel will similarly be updated to reflect the new position and heading. TheBack

button can be selected as long as there are still previously visited anchors on the

hyperStack. Once the stack has been emptied, theBack button will become disabled until

future anchors are visited.

Deletion of anchors from the HyperSystem is accomplished using theDelete button

within the Anchors Available window, and is described in detail in the section below

covering anchor creation and editing.

D. ANCHOR AUTHORING AND EDITING

One of the great strengths of this hypermedia system is its ability to allow for

dynamic authoring of anchors in the virtual world. As well as the previously discussed

ability to delete anchors, facilities are also provided to create new anchors and modify

existing ones “on the fly.” This allows the user to modify his/her version of the virtual

world, i.e., the current hypermedia file, and thus allow him/her to build up the training

42

database for future users. Currently, the anchor authoring capability is completely

contained within the apparatus of the Interface Panel and is menu driven in nature. A future

beneficial capability might allow the user to place anchors directly into the virtual world

via a mouse and pointer scheme.

1. Building a New Anchor

As soon as a hyperfile has been opened, or a new file selected as current, the

capability to create new anchors becomes enabled. To accomplish this action, the user must

select theNew Anchors option under theHypermedia-Edit submenu. This will cause the

Anchor Editor window to appear on top of the Interface Panel, and allow the user to begin

creation of one or more anchors. The Anchor Editor is built from the ViewKit

VkPrefDialog class, which provides the general structure for a preference dialog box. The

programmer can then insert widgets as needed within the dialog window. Figure 14 shows

an example of the Anchor Editor for modifying an existing anchor, which is identical in

structure to that of the New Anchor Editor.

In the case of a new anchor, certain default information is provided to the user to

assist in anchor definition. For example, assuming that the user will most likely drop an

anchor at or near his/her current position in NPSNET, the position and orientation

information in the New Anchor Editor default to the vehicle position and heading

information taken from the most recent communication socket. The user can then define a

meaningful anchor name, and an anchor type. At this time, the user also has the option of

defining the information nodes to be attached to the anchor being defined. This is done by

typing in the path and file name of the associated data file for a particular HyperNode. For

example, the user may enter the path and name of a stored sound file into the “Audio

Filename:” text entry window. It is not necessary that any attached data files be defined at

anchor creation time, as an anchor can be later modified, and files added at that time.

When an anchor is created by selection of theOk or Apply buttons in the Anchor

Editor, theEditAnchorWindow class member function,save(), creates a new anchor and

43

four new nodes to be attached to it, and loads the window information into the appropriate

anchor and node structures. This new anchor is then given a unique anchor identifier and

attached to the end of the anchor linked list, and similarly to the bottom of the anchor

storage table. Also at this time, the current Hypermedia file is flagged as needing to be

saved, and the user will receive prompts to save the file as described earlier.

Upon defining a new anchor, the user can select theOk button to accept the new

anchor and close the editor dialog box. Alternately he/she can click on theApply button to

accept the new anchor, and then continue to define further new anchors by simply

overwriting the information in each text entry window and selectingApply again. Once this

process is complete, selection of theOk button will terminate the editor.

2. Editing an Existing Anchor

The user can also opt to modify an existing anchor in the HyperSystem, whether it

be to update anchor positional information, or to change the attached files for an anchors’s

nodes. Figure 14 shows a sample Current Anchor Editor.

In order to modify an anchor, that anchor must be designated as the current one. The

user can accomplish this by making a “Jump” to that anchor. Once an anchor in the

HyperSystem has been traveled to, theCurrent Anchor option under theHypermedia-

Edit submenu will become enabled. Selection of this option will bring up the Anchor

Editor dialog, loaded with the current anchor’s data. As with the New Anchor Editor,

information in the dialog window can now be modified by the user as desired. As soon as

either theOk or Apply button is selected, the new data will be saved to the HyperSystem,

and will take effect for all future Panel and NPSNET interactions. If theCancel button is

selected prior to either of the other two, any modifications made will be ignored, and the

editor dialog will terminate.

3. Deleting an Anchor

The Delete button on the Anchor Lister (previously described) is used to

dynamically remove an anchor from the current HyperSystem, and involves more

44

Figure 14: Current Anchor EditorDialog Window

45

complexity than meets the eye. Operationally, selection ofDelete will remove the currently

highlighted anchor from the listing, as well as within the NPSNET virtual world. To

remove the anchor from the HyperSystem, the anchor linked list is updated to reflect a

deletion, and then the anchor table must be updated. This involves decrementing the index

of each of the subsequent anchors in the table by one, thus moving them “up” the table.

Additionally, the node linked list and table must similarly be updated, but since each anchor

contains facility for links to four nodes, each node in the table must be “moved up” four

places.

To remove the deleted anchor from display in NPSNET, the communications

socket to NPSNET is updated by the change in the HyperSystem so that, when the next

socket is written, it will indicate to NPSNET that the anchor has been removed. Within

NPSNET, that anchor model will be removed from the overall Performer anchor subtree

and will no longer be drawn in the scene.

E. INFORMATION NODE ACCESS

There are a two primary ways in which an anchor’s HyperNode information can be

accessed while running the Interface Panel with NPSNET. One method has already been

described in this report, and involves setting the Auto Anchor View function and then

selecting whatever node types are desired to be automatically displayed.

The second, and more direct method for displaying node information is via the

Hypermedia Buttons along the bottom edge of the Panel. Figure 15 below shows how these

buttons appear on the Interface Panel.

Figure 15: Interface Panel Hypermedia Control Buttons

46

Among the six Hypermedia Control Buttons there are two categories, or types, of

functions. The last two buttons are used to bring up the current HyperSystem Anchor

Listing and to back up through the HyperStack, respectively, and have been previously

detailed in the Anchor Navigation section. The first four buttons, however, all have to do

with accessing an anchor’s HyperNode information files.

When an anchor has been traveled to, it necessarily becomes the current anchor.

Any information nodes attached to that anchor in the HyperSystem will be registered and

the existing types will be reflected among the first four hypermedia buttons by enabling

those that are appropriate. For example, in Figure 14 above, the current anchor has attached

to it an audio node and a graphical image node. If any of the enabled buttons is selected,

the associated database file will be displayed as appropriate. Audio files will be played over

the local sound system, if one exists. Video files will be displayed using the SGI

Movieplayer tool, which allows for multiple viewings of the clip, pause capability, and

rewind, among other features. Graphical files will be displayed as images within a specially

created ViewKit VkSimpleWindow object. Subsequent selection of this option will

terminate display of the graphic window. And finally, text files are also displayed within a

ViewKit VkSimpleWindow object, and are terminated in the same manner as the graphical

window.

47

VI. CONCLUSIONS AND FUTURE WORK

A. RESULTS OF WORK

The result of this thesis work is that NPSNET-IV.8 now possesses a fully

functioning hypermedia system. This system provides the user the capability to traverse the

virtual world via the anchor system, as well as the ability to author new anchors and modify

existing ones.

This hypermedia capability adds an entirely new facet to NPSNET, extending it into

more of a training role. It provides the potential for users to have access to massive amounts

of data with the simple click of a mouse, while easily traversing the world. This capability

can be viewed from one of two standpoints. In a purely training role NPSNET can be used

with the full hypermedia capability, enabling a single user, or a small number of locally

networked users, to traverse a world via anchor jumps and access information nodes along

the way. Conversely, in an auxiliary role, only the information access functions of the

hypermedia system can be used, thus allowing for more realism as an entity traverses the

world in the conventional manner. This way, the entity will behave as expected globally

over a large network, yet still provide the benefit of information access locally to the user.

With the growth of the World Wide Web (WWW) and the Virtual Reality Modeling

Language (VRML), a draft language specification for adding 3D data to the WWW, the

extent to which hypermedia can be extended is only limited by one’s imagination. It is not

inconceivable to imagine a virtual simulation system possessing a hypermedia capability

that provides direct access into the WWW, thus enabling the user to venture far beyond the

confines of the defined virtual world.

Below, some of the key features of the NPSNET Hypermedia System are revisited.

These include the user interface, and the authoring capabilities of the system.

48

1. User Interface

A consistent user interface is a significant feature of any window and menu driven

application. This idea drove the development of the NPSNET hypermedia system interface

features. Its pull-down menu and pop-up window mechanisms are certainly familiar to

users of any modern GUI-based computer system, thus instilling a level of confidence in

the mind of even the most inexperienced user.

The intelligence of an interface is also a key factor. The hypermedia interface

makes extensive use of so-called “smart buttons” which automatically sensitize and

desensitize based on previous selections and existing conditions. For example, the

information node hypermedia buttons along the lower edge of the interface panel are

enabled only when a hypermedia data file has been opened and an anchor possessing those

information nodes is traversed to. Similarly, when closing an open data file, the system will

automatically query the user as to whether or not he/she wants to save any changes made,

if need be. These features of the interface provide a much more intuitive and comfortable

environment for all levels of users.

2. Anchor Authoring Capability

The hypermedia system allows assignment of information nodes to each anchor.

Additionally, these nodes can have attached to them data files of type audio, video,

graphical image, or text, and can be assigned to specific anchors dynamically. Anchors and

nodes can be added to either an open data file, or to a new data file under construction. This

capability enables the authoring of both new anchors into anexisting world, as well asnew

worlds themselves.

B. FUTURE WORK AREAS

This thesis lays a solid foundation for a hypermedia capability in NPSNET.

However, there are areas for further expansion. Three areas are discussed below that

highlight future research which could improve the overall capability of the system.

49

1. Interface Expansion

Currently, all interaction with the hypermedia anchor system is conducted through

the Control-Interface Panel. While this provides all the functionality needed, it tends to take

away from the user’s feeling of “insertion” into the virtual world. A solution to this

shortcoming would be to add a sophisticated user interface into the 3D world. This could

include the ability for the user to author anchors by “mouse clicking” specific locations in

the world, or modifying anchor location with a mouse dragging scheme.

The problem encountered in implementing the above lies in the way the interface is

currently designed. There is no sense of interaction with the workstation running the

NPSNET session, so there is no easy and direct method by which mouse inputs can be read

and acted upon. This leads one to surmise, then, that the solution to the above idea will

almost certainly involve redesigning the current input structure of the NPSNET and

Interface Panel combination.

Another interface feature might be to display anchor icons within the radar display,

and then allow the user the capability to use this interface as a means of “picking” anchors

to jump to in the virtual world. While this in itself does not involve direct 3D world

interaction, it does provide a 2D interface that might be more intuitive, and provide a bit

more realism, than the current menu driven interface.

2. Variable Anchor Types

The Anchor class built into NPSNET maintains atype parameter, but in its current

version has the capability to be of only one type. Anchors are assigned to a specific location

in the virtual world, and are thus defined to be of typeTERRAIN . An expansion on this

would be to provide for varying anchor types within the Hyper System. Examples could

include a vehicle anchor, which varies its location as the vehicle it is attached to moves

through the world, or a temporal anchor, which exists for only a finite amount of time, and

then deletes itself from the Hyper System at a preset time. These new anchor types could

perhaps be differentiated by varying colors schemes, or anchor geometry.

50

As mentioned, the functionality for different anchor types already exists in the

current Anchor class definition. The incorporation of code required to actually display

varying types would be straightforward. Adding the functionality for these different anchor

types would be more difficult, and would primarily involve redefining the anchor objects

to act in a new manner, as mentioned in the above examples.

3. Hypermedia Datafile Access

While anchor authoring is fully functional in the current hypermedia system,

attachment of data files to associated information nodes is somewhat cumbersome. The

user must know in advance where the desired data file exists in the directory structure, and

type this path into the appropriate dialog window. A better means of authoring would be to

allow the user to somehow preview data files during the authoring process, so that he/she

could view potential files, and then accept one from among these.

Also along these lines, a means might be provided to let the user view existing node

data files by type, or possibly to view particular anchors by what node type they possess.

To illustrate an example, a user could be allowed to access all those anchors that have any

video node attached to them, or to see a listing of those anchors that have an audio node

containing a specific data files.

51

APPENDIX: NPSNET HYPERMEDIA USER’S MANUAL

Included here is a user’s manual covering use of the newly incorporated

hypermedia capabilities of NPSNET-IV.8.

A. STARTING NPSNET AND THE INTERFACE PANEL

In order to run NPSNET under the control of the interface panel, first start an

NPSNET-IV.8 session from within the ~npsnetIV/npsnetIV.8/bin directory as you

normally would, but with the inclusion of the ‘-r’ switch, for example:

unix prompt>: npsnetIV -r <other switches>

To run the interface panel on a different workstation, enter the command ‘panel’

from the ~npsnetIV/npsnetIV.8/bin directory, using the ‘-s’ switch to designate the local

NPSNET session host. For example, if NPSNET is being run on a local workstation called

meatloaf, the interface panel would be started by entering:

unix prompt>: panel -s meatloaf <other switches>

Note: In order to see a listing of other possible switches for the interface panel, simply enter

the ‘-h’ switch for help, i.e., ‘panel -h’.

Finally, once the NPSNET session has come up, hit the ‘i’ key on the keyboard until

the display shows the input source as beingRMT , for remote panel.

B. SELECTING A VEHICLE TYPE

Once the interface panel has come up, inputs from the NPSNET session should be

visible on the various panel displays (assuming NPSNET is also up and running). The first

step is to select on the panel the type of vehicle being run in NPSNET. To do this, select

theVehicle pull-down menu. From there, select one of eitherStealth, Aircraft , Tank, or

ASW Helo. Immediately, the appropriate display for the vehicle type should appear on the

interface panel.

52

C. OPENING A HYPERMEDIA DATABASE FILE

Before beginning a hypermedia session in NPSNET, either a new database file or

an existing one must be opened. To do this, select theHypermedia pull-down menu, and

under that theFile submenu. Under theFile submenu will appear the options to open an

existing file or start a new one (all other options will be disabled at this point). If a new file

is desired, simply selectNew. To open a file, select theOpen option, and then use the

resulting file access dialog box to open a database file.

D. SETTING HYPERMEDIA PREFERENCES

There are a variety of ways by which a user may set interface panel preferences.

Under theHypermedia pull-down menu, selection of theDisplay submenu will result in a

menu showing two option selectors,Anchors On andAll Anchors. The first indicates that

hypermedia anchors are to be displayed in the NPSNET virtual world. If this option is

selected, the selector will change toAnchors Off, and will indicate that anchors will not be

displayed. The second option selector indicates that all of the anchors in the hypermedia

file database are to be displayed. By selecting this option, the selector changes toLocal

Anchors Only, and indicates that only those anchors within a specified range of the vehicle

will be displayed in the virtual world.

The other way to set user preferences for the interface panel is through the

Preferences window, which can be displayed by selecting theHypermedia pull-down

menu, then theEdit submenu under that, and finally thePreferences selector. The

Preferences window gives the user the option of setting the Auto Anchors and Local

Anchors functions of the hypermedia system. By selecting theAuto Anchors toggle, travel

within a specified range of a hypermedia anchor in the virtual world will cause its

information nodes to be displayed. Exactly which information nodes display is set in this

window by selecting theAudio, Video, Graphic, andText toggle buttons. The range out

to which the Auto Anchors function activates these nodes is set in the range window under

theAuto Anchors toggle by simply entering the desired number in the dialog box.

53

Also in the Preferences window is aLocal Anchors Only toggle button, which is

simply another place where this function can be selected. Selection of this toggle will

update theOption menu selector discussed earlier, and vice versa. More importantly,

though, this window enables the user to enter the range out to which local anchors will be

displayed in the virtual world, again by simply entering the desired number in the dialog

box.

E. EDITING HYPERMEDIA ANCHORS

Once a hypermedia data file has been opened, or a new one started, anchors can be

added or modified through the Anchor Editor window. Depending whether a new anchor

is to be added, or an existing one modified, the editor is accessed by selection of theNew

Anchor or Current Anchor selector, as appropriate. Both of these selectors are found

under theEdit submenu, which is under theHypermedia pull-down menu.

Selection ofNew Anchor will open the anchor editor with default values in each of

the data entry locations. From here, anchor data to include name, type, orientation, location,

and data node filenames can be entered into each of the appropriate dialog boxes. Selecting

the Ok button will cause the new anchor to be accepted, and will close the window.

SelectingApply will cause the new anchor to enter, but leave the window open, thus

allowing for further anchors to be added. Finally, theCancel button will cancel any entries

made subsequent to hitting theApply button, and close the window.

To modify the stored parameters for an existing anchor, the desired anchor must

first be made the current one. This is done by jumping to that anchor (to be discussed later).

Once this anchor is the current, select theCurrent Anchor selector, as described above.

The anchor editor window will now appear with the data for that anchor, which can then be

modified. TheOk, Apply , andCancel buttons work the same as above.

F. ANCHOR TRAVERSAL AND NODE SELECTION

Once a hypermedia database has been opened and preferences set, the virtual world

can then be traversed via the anchor system, and information nodes accessed. The primary

54

functionality for using the hypermedia system is located along the bottom edge of the

interface panel.

To access the anchors, select theAnchors Available button. This will display a

window showing a listing of all the anchors, as well as buttons to manipulate them. To get

to a specific anchor location, either double click on that anchor’s name in the list, or select

the name and click on theJump button. As anchors are traversed, a stack is maintained of

visited anchors. To return to a previous location, select theHistory button. This will change

the anchor list window to show the stack. Simply jump back to the desired anchor, or hit

theAll Anchors button to bring back the normal anchor listing.

Once an anchor has been jumped to, and it has thus been designated as current, the

information node buttons along the bottom of the panel will become enabled as appropriate.

Specifically, whatever types of information are attached to the current anchor will cause the

corresponding information buttons to become sensitive. Simply selecting the desired

button -Audio, Video, Graphic, or Text - will cause either a sound clip, a video player

image, a graphical image, or a text box to appear in the interface panel area.

G. SAVING A FILE AND EXITING THE PROGRAM

In order to save an opened hypermedia file select theHypermedia pull-down

menu, then theFile submenu. Under this submenu are two selectors forSave andSave As

functions. TheSave button will only be enabled if a previously opened file is currently

open, and will simply update the stored version. If a new file was opened, then theSave As

button must be used to save the file. Its selection will bring up a Save File dialog box, which

will allow the user to enter a path and file name under which to store the current hypermedia

database.

To exit the interface panel program, select theApplication pull-down menu, and

then theQuit selector button. A dialog box will appear to double check the desire to quit.

If a current hypermedia file is open, and changes have been made to it, the user will be

55

prompted to save the file. Whether saved or not, the current file will be closed before the

program is exited.

56

57

LIST OF REFERENCES

[BUSH45] Bush, Vannevar.,As We May Think, The Atlantic Monthly, July 1945.

[CARD91] Card, Stuart K., Robertson, George G., and Mackinlay, Jock D., “The
Information Visualizer: An Information Workspace,”Human Factors in
Computing Systems, ACM SIGCHI Conference Proceedings, 1991.

[COOK88] Cook, Peter.,An Encyclopedia Publisher’s Perspective, Interactive
Multimedia, Apple Computer Inc., Microsoft Press, 1988.

[LOMB93] Lombardo, Charles P., “Hyper-NPSNET: Embedded Multimedia in a 3D
Virtual World”, Master’s Thesis, Naval Postgraduate School, Monterey,
California, September 1993.

[MCMA94] McMahan, Christopher B., “NPSNET IV: An Object-Oriented Interface
for a Three-Dimensional Virtual World, Master’s Thesis”, Naval
Postgraduate School, Monterey, California, December 1994.

[NELS65] Nelson, Ted.,A File Structure for the Complex, The Changing and the
Indeterminate, ACM 20th National Conference, 1965.

[NELS80] Nelson, Ted., “Replacing the Printed Word: A Complete Literary
System”,Information Processing ‘80, 1980.

[NELS87] Nelson, Ted., “All For One and One For All”,Hypertext ‘87 Proceedings,
November 1987.

[NIEL90] Nielsen, Jakob.,Hypertext and Hypermedia, Academic Press, 1990.

[PRAT94] Pratt, David R., Zyda, Michael J., and Kelleher, Kristen M., “1994 Annual
Report for the NPSNET Research Group”, Naval Postgraduate School,
Monterey, California, 1994.

[RAO90] Rao, Usha, and Turoff, Murray., “Hypertext Functionality: A Theoretical
Framework”, International Journal of Human-Computer Interaction,
1990.

[RAYM88] Raymond, Darrell R., and Tompa, Frank W., “Hypertext and the Oxford
English Dictionary”,Communications of the ACM, July 1988.

58

[SERB94] Serbest, Fikret., “An Automated Tactical Operations Command, Control,
Communications, and Intelligence Planning Tool using Hyper-NPSNET”,
Master’s Thesis, Naval Postgraduate School, Monterey, California,
September 1994.

[SMIT88] Smith, John, and Weiss, Stephen F., “An Overview of Hypertext”,
Communications of the ACM, July 1988.

[VIEW94] “Iris ViewKit Programmer’s Guide,” Online Reference Manual available
with the Silicon Graphics Irix 5.3 Operating System.

[ZYDA93] Zyda, Michael J., Pratt, David R., Falby, John S., Barham, Paul T., and
Kelleher, Kristen M., “NPSNET and the Naval Postgraduate School
Graphics and Video Laboratory”,Presence, December 1993.

59

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 013
Naval Postgraduate School
Monterey, CA 93943-5101

Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Professor David R. Pratt, Code CS/Pr 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Mr John S. Falby, Code CS/Fa 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr Michael J. Zyda, Code CS/Zk 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Mr Paul Barham, Code CS/Barham 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr Donald Brutzman, Code UW/Br 1
Naval Postgraduate School
Monterey, CA 93943

Lt Alan B. Shaffer 2
618 Galen Drive
San Jose, CA 95123

